If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+14y+28=0
a = 1; b = 14; c = +28;
Δ = b2-4ac
Δ = 142-4·1·28
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{21}}{2*1}=\frac{-14-2\sqrt{21}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{21}}{2*1}=\frac{-14+2\sqrt{21}}{2} $
| (3+y)=2y | | 3y+5-8y=4y-55 | | 0=294x−7x^2 | | x-5.7=3 | | 15+3c-2=4 | | 7(m-6)=35 | | 5(p+2)=70 | | (x+4)+(x+10)+(x-20)=180 | | 3y-4y=24 | | X-0.6x=180 | | 5s+18=68 | | 3=1/5x=4 | | 6x+9=5x+16 | | 5(2b-2)=4(b+5) | | 8x+5-2x=3(x+4) | | 4.8y=22.56 | | 4x+5(x-2)=5x+2 | | 3(x-2)+5=x-2(2x-3) | | 20x+22=10-4x | | 3(4x-1)+2(x-2)=0 | | 18x=10x+40 | | 2x-4(x+4)=10 | | 10c2-80c+160=0 | | (4x+x)*2=124 | | 4x4−20x3+25x2=0 | | 2r^2+26r-277=0 | | 2r^2+22r-204=0 | | .40n=-8 | | (2)2m*32=128 | | x2+5x-135=0 | | 2350000/140=248380/x | | -2+5y=52 |